Assignment: Esoph and Young People Survey BOUN - ETM 58D

Due Date April 24, 2018

Abstract

This is an individual assignment. You are given 3 data sets to explore and build models. Add the assignment outcomes to your individual Progress Journals in 3 different html pages built with RMarkdown with all your code and outputs. Please do not forget to add detailed comments and explanations in proper content length to show that you understand these concepts and you can express your findings in a coherent way. Even though there is verbal guidance about the models you can use in the questions, you can use all the models you learned in the class (including random forests). Collaboration is allowed but your work should be your own. Since copy pasting is so easy these days, high similarity between two submissions will result in penalized or nulled grades for this assignment. Those data sets are popular on internet. If you find an inspiration, please state it in a references section with links.

Assignment 1: Esoph and Young People Survey Data

Questions below ask for your insight about the data. There is no single and constructed way to the right answer. Objective of this assignment is to help you help yourself to get data from outside resources, analyze the data, validate your model and convey your conclusions in a clear and reproducible way. You are expected to use R Markdown outputs on your Progress Journals to show your work.

1. Use esoph data set to see if (o)esophageal cancer is related to alcohol consumption, age or tobacco consumption. (Just write esoph to your R console to get the data.)
2. Use the Young People Survey's Hobbies \& Interests category answers to infer "meaning" from the data. You are expected to use methods described in the lecture notes. But also you are welcome to use different methods as well. You can get the data from Kaggle.
3. History: Not interested 1-2-3-4-5 Very interested (integer)
4. Psychology: Not interested 1-2-3-4-5 Very interested (integer)
5. Politics: Not interested 1-2-3-4-5 Very interested (integer)
6. Mathematics: Not interested 1-2-3-4-5 Very interested (integer)
7. Physics: Not interested 1-2-3-4-5 Very interested (integer)
8. Internet: Not interested 1-2-3-4-5 Very interested (integer)
9. PC Software, Hardware: Not interested 1-2-3-4-5 Very interested (integer)
10. Economy, Management: Not interested 1-2-3-4-5 Very interested (integer)
11. Biology: Not interested 1-2-3-4-5 Very interested (integer)
12. Chemistry: Not interested $1-2-3-4-5$ Very interested (integer)
13. Poetry reading: Not interested 1-2-3-4-5 Very interested (integer)
14. Geography: Not interested 1-2-3-4-5 Very interested (integer)
15. Foreign languages: Not interested 1-2-3-4-5 Very interested (integer)
16. Medicine: Not interested $1-2-3-4-5$ Very interested (integer)
17. Law: Not interested $1-2-3-4-5$ Very interested (integer)
18. Cars: Not interested $1-2-3-4-5$ Very interested (integer)
19. Art: Not interested 1-2-3-4-5 Very interested (integer)
20. Religion: Not interested 1-2-3-4-5 Very interested (integer)
21. Outdoor activities: Not interested 1-2-3-4-5 Very interested (integer)
22. Dancing: Not interested $1-2-3-4-5$ Very interested (integer)
23. Playing musical instruments: Not interested 1-2-3-4-5 Very interested (integer)
24. Poetry writing: Not interested 1-2-3-4-5 Very interested (integer)
25. Sport and leisure activities: Not interested 1-2-3-4-5 Very interested (integer)
26. Sport at competitive level: Not interested 1-2-3-4-5 Very interested (integer)
27. Gardening: Not interested 1-2-3-4-5 Very interested (integer)
28. Celebrity lifestyle: Not interested 1-2-3-4-5 Very interested (integer)
29. Shopping: Not interested 1-2-3-4-5 Very interested (integer)
30. Science and technology: Not interested 1-2-3-4-5 Very interested (integer)
31. Theatre: Not interested 1-2-3-4-5 Very interested (integer)
32. Socializing: Not interested 1-2-3-4-5 Very interested (integer)
33. Adrenaline sports: Not interested 1-2-3-4-5 Very interested (integer)
34. Pets: Not interested 1-2-3-4-5 Very interested (integer)

Assignment 2: Diamonds Data

Your assignment consists of finding the price of a diamond given its properties. You will use the diamonds data set in ggplot2 package (which is inside tidyverse). You need to do your exploratory analysis well and come up with a predictive model. Your performance depends on the difference between the actual price of the diamond and the predicted price by the model. Use the price column as the response variable and other columns (except diamond_id) as predictors.

You are recommended to use CART but welcome to use any advanced method you like. Add your exploratory analysis to form a basis of your model and include references (with links) if you are inspired from similar analysis. Use the following code (and random seed) to form your train and test data. Remember, you should train your model on the train data and your real performance depends on the test data.

```
set.seed(503)
library(tidyverse)
diamonds_test <- diamonds %>% mutate(diamond_id = row_number()) %>%
    group_by(cut, color, clarity) %>% sample_frac(0.2) %>% ungroup()
diamonds_train <- anti_join(diamonds %>% mutate(diamond_id = row_number()),
    diamonds_test, by = "diamond_id")
diamonds_train
```

\#\#		carat	cut	color	clarity	depth	table	price	x	y	z
\#\#		<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>
\#	1	0.230	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
\#	2	0.210	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
\#	3	0.230	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
\#	4	0.290	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
\#	5	0.240	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
\#	6	0.240	Very Good	I	VVS1	62.3	57.0	336	3.95	3.98	2.47
\#	7	0.260	Very Good	H	SI1	61.9	55.0	337	4.07	4.11	2.53
\#\#	8	0.220	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
\#\#	9	0.230	Very Good	H	VS1	59.4	61.0	338	4.00	4.05	2.39
\#\#	10	0.300	Good	J	SI1	64.0	55.0	339	4.25	4.28	2.73

```
diamonds_test
```

```
## # A tibble: 10,797 x 11
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 3.40 Fair D I1 66.8 52.0 15964 9.42 9.34 6.27
## 2 0.900 Fair D S SI2 
## 3 0.950 Fair D SI2 
## 4 1.00 Fair D Sl2 SI2 65.2 56.0
## 5 0.700 Fair D Sl2 SI2 58.1 60.0 2358
## 6 1.04 Fair D SI2 
## 7 0.700 Fair D SI2 lllllllllllllll
## 8 1.03 Fair D Sl2 SI2 66.4 56.0
## 9 1.10 Fair D Sl2 Sllllllllllllll
## 10 2.01 Fair D SI2 59.4 66.0 15627 8.20 8.17 4.86
## # ... with 10,787 more rows, and 1 more variable: diamond_id <int>
```


Assignment 3: Spam Data

Original library is in UCI Database. See documentation on the website for further detail.
Your assignment consists of buiding a CART model to detect spam mail using UCI's Spambase data and analyze it. You performance depends on correct specification of spam/non-spam mails in the test subset. You are going to use the RData file given on course webpage. Report your way of thinking, methodology, code and results.

You can load the data by using load command from your working directory or anywhere if you specify the path. For some installations, you can also double click the on the RData file to load. Name of the data frame is spam_data (same as the file name).

```
load("spam_data.RData")
head(spam_data)
```

Column names and short explanations are given below. For further details see the UCI documentation given in the above link.

```
train_or_fest - 0 train, 1 test
spam_or__not - 0 not spam, 1 spam
V1 - word_freq_make
V2 - word_freq_address
V3 - word_freq_all
V4 - word_freq_3d
V5 - word_freq_our
V6 - word_freq_over
V7 - word_freq_remove
V8 - word_freq_internet
V9 - word_freq_order
V10 - word_freq_mail
V11 - word_freq_receive
```

V12 - word_freq_will
V13 - word_freq_people
V14 - word_freq_report
V15 - word_freq_addresses
V16 - word_freq_free
V17 - word_freq_business
V18 - word_freq_email
V19 - word_freq_you
V20 - word_freq_credit
V21 - word_freq_your
V22 - word_freq_font
V23 - word_freq_000
V24 - word_freq_money
V25 - word_freq_hp
V26 - word_freq_hpl
V27 - word_freq_george
V28 - word_freq_650
V29 - word_freq_lab
V30 - word_freq_labs
V31 - word_freq_telnet
V32 - word_freq_857
V33 - word_freq_data
V34 - word_freq_415
V35 - word_freq_85
V36 - word_freq_technology
V37 - word_freq_1999
V38 - word_freq_parts
V39 - word_freq_pm
V40 - word_freq_direct
V41 - word_freq_cs
V42 - word_freq_meeting
V43 - word_freq_original
V44 - word_freq_project
V45 - word_freq_re
V46 - word_freq_edu
V47 - word_freq_table

V48 - word_freq_conference
V49 - char_freq_;
V50 - char_freq_(
V51 - char_freq_[
V52 - char_freq_!
V53 - char_freq_\$
V54 - char_freq_\#
V55 - capital_run_length_average
V56 - capital_run_length_longest
V57 - capital_run_length_total

